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Abstract. We present a detailed theoretical study on high-frequency acoustic- (AC-) phonon
generation from a GaAs-based parabolic-quantum-well (PQW) wire system in strong magnetic
fields. A situation where the magnetic field is applied perpendicular to the quantum wire but at
an angle to the confining potential of the one-dimensional electron gas is taken into account. The
frequency and angular distribution of AC-phonon emission has been studied through calculating
the electron-energy-loss rate in this configuration. The results obtained from this study indicate
that: (1) in the presence of tilted magnetic fields, a PQW wire is a system in which the electron
energy spectrum is independent of the angle in which the magnetic field is applied; (2) the
frequencies of the AC phonons generated are aroundf = ωQ/2π ∼ 102 GHz and depend
weakly on the strength and angle of the magnetic field; (3) the AC-phonon generation can be
markedly enhanced by magnetic fields over all angle regimes; and (4) the AC-phonon emission
in tilted magnetic fields has a different dependence on the phonon emission angle from that at
zero magnetic field.

1. Introduction

In recent years, it has been realized that GaAs-based low-dimensional semiconductor
systems (LDSSs) can be applied as high-frequency acoustical devices such as high-frequency
ultrasonic generators [1–6]. The physical mechanism underlying this proposal is based on
the generation of high-frequency acoustic (AC) phonons by heated electrons in the device
systems. In a LDSS, the conducting electrons are confined within the nanometre distance
scale so that the electronic subband energy, the electron kinetic energy, the Fermi energy,
etc, are on the meV scale and that the energy transfer during the electronic transitions, due
to scattering, etc, can reach the meV scale. Consequently, the energy (frequency) of the
AC phonons generated from LDSSs can be on the meV (terahertz, THz) scale.

At present, there are some technical difficulties in detecting experimentally the frequency
and angular dependence of the AC-phonon emission, especially in the THz phonon
frequency regime. Theoretical calculations and analyses play an important role in designing
possible devices and in understanding and predicting the experimental findings. Important
contributions have already been made by some authors [2, 3, 5, 6]. The frequency and
angular distribution of AC-phonon emission from AlGaAs/GaAs-based two-dimensional
semiconductor systems (2DSSs) at zero [2] and strong magnetic fields applied parallel [6]
and perpendicular [5] to the interface of the 2DSSs has been studied in detail over the
last two decades. The AC-phonon emission from quantum wire systems has received great
attention recently [3] due to the distinctive features of electron–phonon interactions in these
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novel systems. The important and unusual natures of the electronic subband structure and the
electronic properties for a one-dimensional electron system (1DES) have been summarized
by, e.g., reference [7]. In this paper, we will look at the AC-phonon generation from a
quantum wire system in strong magnetic fields. In order to find out the condition for being
able to detect the strongest phonon signal, we consider the situation where the magnetic
field is applied at an angle to the confining potential of the 1DES. The electronic subband
structure in this configuration is studied in section 2. From both a fundamental study and
a device application points of view, the most important theoretical result which will help
experimental measurements is the intensity of AC-phonon emission as a function of phonon
frequency and phonon emission angle. In section 3, we study the frequency and angular
distribution for AC-phonon emission by heated electrons in a 1DES in tilted magnetic fields
via calculating the electron-energy-loss rate caused by electron–AC-phonon interaction. The
numerical results obtained from the present study are presented and discussed in section 4,
where we can see some unusual and interesting features of AC-phonon emission in the
defined configuration. The conclusions of this study are summarized in section 5.

Figure 1. The electronic subband energyεMN = (M + 1/2)h̄ω0 + (N + 1/2)h̄ωB and Fermi
energyEF in a parabolic-quantum-well wire as a function of the magnetic field.εMN does not
depend on the angle of the magnetic fields applied.ne is the electron density for the 1DEG and
ω0 is the characteristic frequency defining a PQW wire system.

2. Electronic subband structure for a parabolic-quantum-well wire in tilted magnetic
fields

The basic difference of phonon emission and scattering by a one-dimensional electron gas
(1DEG) at zero and strong magnetic fields results from the fact that the electron wave
function, electronic energy spectrum and the density of states (DOS) in a strong magnetic
field are different from those atB = 0. Further, for a 1DEG subjected to a magnetic field,
the electronic subband structure will be strongly modified by the strength and angle of the
magnetic field, due to the coupling of the magnetic potential to the confining potential of
the 1DEG. In this paper, we consider a configuration in which: (1) the quantum wire is
along they-direction; (2) the magnetic field is applied perpendicular to the quantum wire
but at an angle to the confining potential of the 1DEG—defining the angle between the
magnetic field applied and thex-axis asθB , we haveB = B(cosθB, 0, sinθB); and (3) the
confining potential of the 1DEG is modelled by a parabolic-quantum-well (PQW) potential
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(or harmonic potential), i.e.,U(x, z) = m∗
0ω

2
0(x

2 + z2)/2 wherem∗
0 is the effective electron

mass andω0 is the characteristic frequency for the confinement. A PQW wire system can
be formed by, e.g., using nanoscale lithographic techniques [8] and/or placing control gate
electrodes on the top of a buried GaAs layer [9]. These techniques are usually applied to
form the quantum dot structures when an external confinement potential is present along
the y-direction. After taking into account the above remarks and using the Landau gauge,
i.e., the vector potentialA = B(0, x sinθB − z cosθB, 0), the free-electron Hamiltonian for
a PQW wire in tilted magnetic fields within a single-particle approximation is given by

H = − h̄2

2m∗
0

∂2

∂x2
− h̄2

2m∗
0

∂2

∂z2
+ U(x, z) + m∗

0

2
ω2

c (l
2ky + x sinθB − zcosθB)2 (1a)

with l = (h̄/eB)1/2 the radius of the ground cyclotron orbit andωc = eB/m∗
0 the cyclotron

frequency. Using the point canonical transformation, i.e.,X = x cosθB + z sinθB and
Z = −x sinθB + z cosθB − (ωc/ωB)l2

Bky , the Hamiltonian becomes

H = − h̄2

2m∗
0

∂2

∂X2
+ m∗

0

2
ω2

0X
2 − h̄2

2m∗
0

∂2

∂Z2
+ m∗

0

2
ω2

BZ2 + h̄2k2
y

2m∗
B

(1b)

which represents two harmonic oscillators. Here, we have defined: (i)ωB =
√

ω2
c + ω2

0,

ωB = ω0 at B = 0; (ii) lB = (h̄/m∗
0ωB)1/2, lB = l0 = (h̄/m∗

0ω0)
1/2 at B = 0; and (iii)

m∗
B = m∗

0[1 + (ωc/ω0)
2]. The electron wave function and energy spectrum are obtained

respectively as

|ky, M, N〉 = (2M+NM!N !πl0lB)−1/2eikyye−(ξ2
0 +ξ2

B)/2HM(ξ0)HN(ξB) (2)

with ξ0 = X/l0, ξB = Z/lB andHN(x) the Hermite polynomials, and

EMN(ky) = h̄2k2
y

2m∗
B

+
(

M + 1

2

)
h̄ω0 +

(
N + 1

2

)
h̄ωB. (3)

Further, from the electronic energy spectrum, the density of states (DOS) for electron in the
energy levelα = (M, N) is obtained as

Dα(E) = gs

2π

√
2m∗

B

h̄2

2(E − εα)√
E − εα

(4)

wheregs = 2 accounts for spin degeneracy,2(x) is the unit step function, and

εα = (M + 1/2)h̄ω0 + (N + 1/2)h̄ωB. (5)

Comparing equations (2)–(5) with the results obtained from a PQW wire at zero magnetic
field, we see that: (1) in the presence of a magnetic field, the electron wave function is
described by two coupled harmonic oscillators; (2) the centre of the harmonic-oscillator
wave function is shifted by thestrengthof the magnetic field due to the cyclotron motion
of the electron; (3) the electronic subband energyεα depends only on the strength of the
magnetic field; (4) the energy separation between different quantum states (described by
N = 0, 1, 2,. . . ) and the effective electron mass along they-direction are enhanced by the
magnetic field; and (5) the representative density-of-states effective electron mass is also
enhanced by the magnetic field. Nevertheless, for a PQW wire system, the presence of the
tilted magnetic field will not change the 1D nature of the electronic system. The electronic
subband energy and the chemical potential (or Fermi energy) for a PQW wire are plotted
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in figure 1 as a function of the strength of the magnetic field, where the Fermi energyEF

is determined by using the condition of electron number conservation

ne = 1

π

√
2m∗

B

h̄2

∑
α

∫ ∞

0

dx√
x

f 0(x + εα). (6)

Herene is the electron density of the 1DEG andf 0(x) = [e(x−EF )/kBT + 1]−1 the Fermi–
Dirac function.

3. Acoustic-phonon emission from PQW wires in tilted magnetic fields

Using the Boltzmann equation approach, the average energy-loss rate of an electron to the
lattice, due to the electron–phonon interactions in a 1DEG, can be defined by [10]

PT = A
∑

α

∫
dky Eα(ky)

[
∂fα(ky)

∂t

]
coll

= A
∑

α

∫
dky fα(ky)

[
−dε

dt

]
coll

(7)

whereα = (M, N), fα(ky) is the distribution function for electrons in a state|ky, α〉 and
A = [

∑
α

∫
dky fα(ky)]−1 is a normalization factor for which after using the condition of

electron number conservation we haveA = 1/(πne). In equation (7),∂fα(ky)/∂t is the
variation of fα(ky) at time t by the scattering (collision) process while the variation of
electron energy at timet by scattering process is in the form[
−dε

dt

]
coll

= gs

2π

∑
α′

∫
dk′

y [1 − fα′(k′
y)][Eα(ky) − Eα′(k′

y)]Wα′α(k′
y, ky). (8)

Here the transition rate for scattering an electron from a state|ky, α〉 to a state|k′
y, α

′〉 is
given by

Wα′α(k′
y, ky) = W−

α′α(k′
y, ky) + W+

α′α(k′
y, ky) (9a)

and after using Fermi’s golden rule

W±
α′α(k′

y, ky) = 2π

h̄

∑
qx ,qz

[
NQ

NQ + 1

]
Ci(Q)Gα′α(Q)δk′

y ,ky+qy
δ[Eα′(k′

y) − Eα(ky) ∓ h̄ωQ].

(9b)

Here, the upper (lower) case refers to absorption (emission) of a phonon with energy
h̄ωQ, Q = (qx, qy, qz) is the phonon wave vector,NQ = [eh̄ωQ/kBT − 1]−1 is the phonon
occupation number, andCi(Q) is the coefficient describing electron interactions with the
ith phonon mode. Further,Gα′α(Q) = |〈M ′, N ′|ei(qxx+qzz)|M, N〉|2 is the form factor for
electron–phonon interaction. Using the electron wave function for a PQW wire subjected
to a tilted magnetic field, we haveGα′α(Q) = CM ′,M(a2/2)CN ′,N ((b2 + c2)/2) where
a = l0(qx cosθB + qz sinθB), b = lB(qx sinθB − qz cosθB), c = (ωc/ωB)lBqy , and
CN,N+J (y) = [N !/(N + J )!]e−yyJ [LJ

N(y)]2 with LJ
N(y) being the associated Laguerre

polynomials. For a PQW wire in tilted magnetic fields, the form factor for the electron–
phonon interaction depends onqx, qy andqz.

To investigate the frequency and angular distribution of AC-phonon emission in the
geometry defined in this study, it is convenient to define the phonon wave vector in
polar coordinates:Q = Q(sinφ cosθ, cosφ, sinφ sinθ) where φ is the polar angle and
the polar axis is taken along the direction of the quantum wire.θ and φ also define
the phonon emission angle. In this paper, we use a Fermi–Dirac type of statistical
energy distribution function as the electron distribution, throughfα(ky) = f (Eα(ky)),
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wheref (x) = [e(x−EF )/kBTe + 1]−1 with Te being the electron temperature. The inclusion
of electron–phonon scattering in the case of degenerate statistics implies that phonon
emission occurs mainly among the occupied electronic subbands accompanied by electronic
transitions around the Fermi level. Thus, the total electron-energy-loss rate (EELR) per
electron is in the form

PT =
∫ ∞

0
dωQ

∫ 2π

0
dθ

∫ π

0
dφ P (ωQ, θ, φ) (10)

where we have used the long-wavelength approximation for AC-phonon modes, i.e.,
ωQ ' viQ with vi the corresponding sound velocity. The frequency and angular distribution
function for the phonon emission is given by

P(ωQ, θ, φ) =
∑
α′,α

[(NQ + 1)I−
α′α(Q) − NQI+

α′α(Q)] (11)

and

I±
α′α(Q) = m∗

BQωQ

2π3h̄2vine

Ci(Q)Gα′α(Q)f (εα + ε±
α′α)[1 − f (εα + ε±

α′α ± h̄ωQ)] tanφ (12)

whereε±
α′α = (εα − εα′ − εqy

± h̄ωQ)2/4εqy
with εqy

= h̄2q2
y/2m∗

B . Equation (11) indicates
that the net energy transfer rate is the difference between phonon emission and absorption
by heated electrons in the device system.

Figure 2. The acoustic-phonon spectrum detected at a
fixed angle(θ, φ) for different magnetic fields applied at
a fixed angleθB to thex-axis. The quantityP(ωQ, θ, φ)

is presented andTe is the electron temperature. The
sample parameters are as shown in figure 1.

Figure 3. The acoustic-phonon spectrum,P(ωQ, θ, φ),
detected at a fixed angle(θ, φ) and at a magnetic field
B = 10 T applied at different angles to thex-axis. The
sample parameters are as shown in figure 1.

For a GaAs-based PQW wire structure, the phonon modes in the device system are
very similar to those in GaAs. The results obtained from experimental [1] and theoretical
[6] studies have indicated that for GaAs-based LDSSs at intermediate excitation levels
(i.e., within the electron temperature range 10< Te < 40 K), the electron–AC-phonon
interactions are mainly via coupling with deformation-potential acoustic phonons. When
Te < 10 K (Te > 40 K), electron interaction with piezoelectric phonons (optic phonons)
is a major mechanism for the energy relaxation of the excited electrons. In the present
study, we limit ourselves to the situation where AC-phonon emission is generated mainly
via electron interactions with the deformation-potential acoustic phonons. For GaAs only
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the longitudinal-AC-phonon mode is connected with the deformation potential (DP) and the
coupling coefficient is given by

CDP (Q) = h̄E2
DQ

2ρvl

(13)

where ED is the deformation-potential constant (ED ' 11 eV for GaAs-based LDSSs),
ρ is the density of the material (ρ = 5.37 kg m−3 for GaAs), andvl is the longitudinal
sound velocity (vl = 5.29 × 107 m s−1 for GaAs). Introducing the coupling coefficient
(equation (13)) into equation (12), we can perform numerical calculations for AC-phonon
emission via electron interaction with deformation-potential acoustic phonons.

4. Results and discussion

In this paper, our calculations are performed for GaAs-based PQW wires. The effective
electron mass for GaAs at zero magnetic field ism∗

0 = 0.0665me whereme is the electron
rest mass. The sample parameters, such as the characteristic frequency of a PQW and
the electron density of the 1DEG, can be taken from the experimental data. For a model
calculation, we take ¯hω0 = 4 meV andne = 108 m−1.

Normally the AC-phonon emission can be detected by, e.g., phonon emission
experiments [11] which are carried out at low temperatures using superconducting
bolometers as phonon detectors. In the calculation, we take the lattice temperatureT = 2 K
which depends on using an Al bolometer as the detector [1]. We take the electron
temperature asTe =20 K in the calculations, which corresponds to an excitation energy
around about 1 pW per electron according to reference [1].

Figure 4. The total intensity of the phonon signal detected at a fixed angle(θ, φ) as a function
of the angle of the magnetic field applied for different strengths of the magnetic field. The
quantityP(θ, φ) = ∫ ∞

0 dωQ P(ωQ, θ, φ) is presented and the sample parameters are the same
as in figure 1.

The spectrum of the AC phonons generated is shown in figures 2 and 3 where we
plot the quantityP(ωQ, θ, φ) as a function of phonon frequency. We note that: (i) the
frequency of the AC phonons generated from a PQW wire in magnetic fields is around
ωQ/2π ∼ 1011 Hz = 102 GHz (see figures 2 and 3); (ii) AC-phonon generation is markedly
enhanced by the magnetic field (see figure 2). The intensity of phonon emission increases
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with B (also see figure 5, later); and (iii) the angle of the magnetic field applied has a
strong influence on the intensity of phonon signal detected but affects weakly the phonon
frequency (see figure 3). The most significant conclusion that we draw from these results
is that a pronounced enhancement of AC-phonon generation can be achieved by applying a
magnetic field to a PQW wire structure without varying significantly the intrinsic features
of the generator at zero magnetic field.

Figure 5. The total intensity of the phonon signal,
P(θ, φ), detected at a fixed angle(θ, φ) as a function of
magnetic field applied at different angles to thex-axis.
The sample parameters are as shown in figure 1.

Figure 6. The total intensity of the phonon signal,
P(θ, φ) detected at a fixed angleθ for different angles
φ, as a function of Fermi energy at zero magnetic field.
The Fermi energy is changed by varying the electron
density from about 105–1010 m−1.

The dependence of the total intensity of AC-phonon signals detected at a fixed angle
(θ, φ) (i.e., the quantityP(θ, φ) = ∫ ∞

0 dωQ P(ωQ, θ, φ)) on the angle of the magnetic field
applied is shown in figure 4 for different magnetic field strengths. A stronger dependence
of the phonon emission onθB can be found for a larger magnetic field, due to the fact that
the detected AC-phonon signals increase with increasingB (see figure 5). The strongest
AC-phonon emission can be detected at aroundθB = 120◦. The results obtained from our
further calculations indicate that this phenomenon can be observed over all phonon emission
angles. Hence, we conclude that for a PQW wire the strongest AC-phonon emission can be
generated by applying a magnetic field at an angleθB = 120◦ to the x-axis of the device
system. We note that the usage of equation (13) implies that we may take the (001) direction
of a crystal with zinc-blende symmetry (such as GaAs) as thez-direction in our defined
configuration. In figure 5, the increase in the phonon generation with increasing magnetic
field is induced mainly by an enhancement of the effective electron–phonon interaction
caused by enhanced effective electron mass and density of states in high magnetic fields
and by a magnetic-field-modulated Fermi energy (see figure 1). The strong dependence of
phonon generation on the Fermi energy is evident in figure 6 where we plot the intensity of
the phonon signal as a function of Fermi energy atB = 0. The inclusion of electron–phonon
scattering in the case of degenerate statistics requires phonon generation to be accompanied
by electronic transitions around the Fermi level. Therefore, a variation in Fermi energy will
result in a variation of scattering channels for phonon emission.

The AC-phonon emission angle in a PQW wire in tilted magnetic fields is shown in
figures 7 and 8. The angular distribution of phonon generation is determined by: (i) the
requirements of momentum and energy conservations during electron–phonon scattering
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Figure 7. The dependence of acoustic-phonon emission
on the angleθ at a fixed angleφ for different magnetic
fields applied at a fixed angleθB to thex-axis. P(θ, φ)

is presented and the sample parameters are as shown in
figure 1.

Figure 8. The dependence of acoustic-phonon emission
on the angleφ at a fixed angleθ for different magnetic
fields applied at a fixed angleθB to thex-axis. P(θ, φ)

is presented and the sample parameters are as shown in
figure 1.

events; (ii) the electron–phonon interaction matrix element, i.e.,Ci(Q). For electron
interactions with deformation-potential acoustic phonons,CDP (Q) is independent of the
phonon emission angle (see equation (13)); and (iii) the form factor for electron–phonon
interactions. For a PQW wire atB = 0, the form factor depends only onq2

x + q2
z (i.e., on

the angleφ) and a weak dependence of the phonon emission on the angleθ can be expected
(see figure 7). WhenB 6= 0 the form factor is a function ofqx , qy andqz, which results in a
strong dependence of the phonon emission on the angleθ and on the strength and angle of
the magnetic field applied. The nature of electron interactions with bulk-like AC phonons
implies that the form factor depends always onqx andqz. Therefore, a strong dependence
of AC-phonon emission on the angleφ can be observed in all magnetic fields (see figure 8).
The results obtained from our further calculations show that the dependence of AC-phonon
generation on the phonon emission angle differs slightly on varying the angle of the magnetic
fields applied. This is due to the fact that the form factor for electron–phonon interaction
depends onθB .

5. Summary

In this paper, we have studied the electronic subband structure for a parabolic-quantum-
well wire system in the presence of a magnetic field applied perpendicular to the quantum
wire but at an angle to the confining potential of the 1DES. We have found that: (1)
the electron energy spectrum and the effective electron mass in this configuration depend
only on the strength of the magnetic field applied; (2) the effective electron mass and the
representative density-of-states effective electron mass are enhanced by the magnetic field;
and (3) the Fermi energy in the electronic system depends strongly on the magnetic field
applied. Nevertheless, the electrons in a PQW wire in tilted magnetic fields still retain their
1D nature. An enhanced effective electron mass and density of states in high magnetic fields
will lead to an enhancement of the effective electron–phonon interaction. Together with a
strong dependence of the Fermi energy on the magnetic field, consequently, the generation
of high-frequency acoustic phonons will be enhanced at high magnetic fields through intra-
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and inter-subband electronic transitions.
We have developed a theoretical model which can be used to calculate the frequency

and angular distribution of acoustic-phonon emission from a PQW wire in strong magnetic
fields. Considering that in the intermediate-electron-temperature regime (10< Te < 40 K)
AC-phonon emission is generated mainly through electron interactions with deformation-
potential acoustic phonons, we have studied the dependence of AC-phonon emission on the
phonon frequency, phonon emission angle, and on the strength and angle of the magnetic
field applied. The results obtained from this theoretical study have shown that: (1) for
a PQW wire subjected to magnetic fields, the frequency of the AC phonons generated
is aroundωQ/2π ∼ 1011 Hz; (2) the generated phonon frequency depends weakly on the
strength and angle of the applied magnetic fields; (3) the generation of AC phonons increases
rapidly with increasing magnetic field; (4) the strongest phonon emission can be generated
at θB = 120◦ for a fixed strength of the magnetic field over all phonon emission angles;
and (5) for a PQW wire structure, the AC-phonon emission angle in tilted magnetic fields
differs from that atB = 0 and depends on the strength and angle of the applied magnetic
fields.

The application of GaAs-based low-dimensional electron systems to electronic, photonic
and optoelectronic devices has been investigated rather intensively over the past two decades.
The exploration of using these novel systems as high-frequency acoustical devices, such as
high-frequency ultrasonic generators, through generating high-frequency acoustic phonons
by electrically heated electrons in the device systems, will enhance the field of device
applications, and is the motivation behind this study. The theoretical results presented in
this paper may help in the detection of acoustic-phonon emission by, e.g., phonon emission
experiments.
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